Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Res Vet Sci ; 172: 105255, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38608346

RESUMO

Rabbit hemorrhagic disease virus (RHDV) can cause fatal fulminant hepatitis, which is very similar to human acute liver failure. The aim of this study was to investigate whether adipose-derived stem cells (ADSCs) could alleviate RHDV2-induced liver injury in rabbits. Twenty 50-day-old rabbits were divided randomly into two groups (RHDV2 group, ADSCs + RHDV2 group). Starting from the 1st day, two groups of rabbits were given 0.5 ml of viral suspensions by subcutaneous injection in the neck. Meanwhile, the ADSCs + RHDV2 group was injected with ADSCs cell suspension (1.5 × 107 cells/ml) via a marginal ear vein, and the RHDV2 group was injected with an equal amount of saline via a marginal ear vein. At the end of the 48 h experiment, the animals were euthanized and gross hepatic changes were observed before liver specimens were collected. Histopathological analysis was performed using hematoxylin-eosin (HE), periodic acid schiff (PAS) and Masson's trichrome staining. For RHDV2 affected rabbits, HE staining demonstrated disorganized hepatic cords, loss of cellular detail, and severe cytoplasmic vacuolation within hepatocytes. Glycogen was not observed with PAS staining, and Masson's Trichrome staining showed increased hepatic collagen deposition. For rabbits treated with ADSCs at the time of inoculation, hepatic pathological changes were significantly less severe, liver glycogen synthesis was increased, and collagen fiber deposition was decreased. For RHDV2 affected rabbits, Tunel and immunofluorescence staining showed that the number of apoptotic cells, TGF-ß, and MMP-9 protein expression increased. And that in the ADSC treated group there was less hepatocyte apoptosis. In addition, RHDV2 induces liver inflammation and promotes the expression of IL-1ß, IL-6, and TNF-α. In rabbits administered ADSCs at time of inoculation, the expression of inflammatory factors in liver tissue decreased significantly. Our experiments show that ADSCs can protect rabbits from liver injury by RHDV2 and reduce the pathological and inflammatory response of liver. However, the specific protective mechanism needs further study.

2.
Sci Total Environ ; 926: 171833, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38522539

RESUMO

Wastewater surveillance enables rapid pathogen monitoring and community prevalence estimation. However, how to design an integrated and tailored wastewater surveillance framework to monitor major health threats in metropolises remains a major challenge. In this study, we first analyzed the historical clinical data of Xi'an city and designed a wastewater surveillance framework covering five key endemic viruses, namely, SARS-CoV-2, norovirus, influenza A virus (IAV), influenza B virus (IBV), respiratory syncytial virus (RSV), and hantavirus. Amplicon sequencing of SARS-CoV-2, norovirus and hantavirus was conducted biweekly to determine the prevalent community genotypes circulating in this region. The results showed that from April 2023 to August 2023, Xi'an experienced two waves of SARS-CoV-2 infection, which peaked in the middle of May-2023 and late August-2023. The sewage concentrations of IAV and RSV peaked in early March and early May 2023, respectively, while the sewage concentrations of norovirus fluctuated throughout the study period and peaked in late August. The dynamics of the sewage concentrations of SARS-CoV-2, norovirus, IAV, RSV, and hantavirus were in line with the trends in the sentinel hospital percent positivity data, indicating the role of wastewater surveillance in enhancing the understanding of epidemic trends. Amplicon sequencing of SARS-CoV-2 revealed a transition in the predominant genotype, which changed from DY.1 and FR.1.4 to the XBB and EG.5 subvariants. Amplicon sequencing also revealed that there was only one predominant hantavirus genotype in the local population, while highly diverse genotypes of norovirus GI and GII were found in the wastewater. In conclusion, this study provided valuable insights into the dynamics of infection trends and predominant genotypes of key pathogens in a city without sufficient clinical surveillance, highlighting the role of a tailored wastewater surveillance framework in addressing public health priorities. More importantly, our study provides the first evidence demonstrating the applicability of wastewater surveillance for hantavirus, which is a major health threat locally.


Assuntos
COVID-19 , Vírus da Influenza A , Norovirus , Humanos , Esgotos , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias , China/epidemiologia , COVID-19/epidemiologia , Norovirus/genética , SARS-CoV-2
3.
Sci Total Environ ; 927: 171973, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38547995

RESUMO

The aim of this study was to investigate the alleviating effect of selenomethionine (SeMet) on aflatoxin B1 (AFB1)-induced testicular injury in rabbits. Twenty-five 90-d-old rabbits were randomly divided into 5 groups (the control group, the AFB1 group, the 0.2 mg/kg SeMet + AFB1 group, the 0.4 mg/kg SeMet + AFB1 group and the 0.6 mg/kg SeMet + AFB1 group). After 1 d of the experiment, the SeMet-treated groups were fed 0.2 mg/kg SeMet, 0.4 mg/kg SeMet, or 0.6 mg/kg SeMet daily, and the remaining two groups were fed a normal diet for 30 d. On Day 31, all rabbits in the model group and the three treatment groups were fed 0.5 mg/kg AFB1 for 21 d. The levels of testosterone (T), luteinizing hormone (LH) and follicle stimulating hormone (FSH) in rabbit plasma were detected. Rabbit semen was collected, and its quality was evaluated. Pathological changes in rabbit testes were observed by hematoxylin-eosin (HE) staining. The expression of related proteins in testicular tissue was detected by immunohistochemistry, immunofluorescence and western blot (WB) analysis. Enzyme-linked immunosorbent assays (ELISAs) were used to detect oxidative stress-related indices and inflammatory factors in testicular tissue. The results showed that AFB1 can induce oxidative stress and inflammation to activate the p38/MSK/NF-κB signalling pathway, mediate apoptosis, inhibit the proliferation and differentiation of testicular cells, destroy the integrity of the blood-testis barrier (BTB) and the normal structure of the testis, and reduce the content of sex hormones and semen quality. SeMet pretreatment significantly alleviated testicular injury oxidative stress, and the inflammatory response in rabbits. Thus, we demonstrated that SeMet restores AFB1-induced testicular toxicity by inhibiting the p38/MSK/NF-κB signalling pathway. In addition, in this study, 0.4 mg/kg SeMet had the most impactful effect.


Assuntos
Aflatoxina B1 , Selenometionina , Testículo , Animais , Masculino , Coelhos , Aflatoxina B1/toxicidade , Selenometionina/farmacologia , Testículo/efeitos dos fármacos , Testosterona/sangue , Substâncias Protetoras/farmacologia , Doenças Testiculares/prevenção & controle , Doenças Testiculares/induzido quimicamente , Estresse Oxidativo/efeitos dos fármacos , Hormônio Luteinizante/sangue , Apoptose/efeitos dos fármacos
4.
Ultrason Sonochem ; 103: 106783, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38364480

RESUMO

The oxide film on the surface of the grinding wheel plays a very important role in ultrasonic-assisted electrolytic in-process dressing (UA-ELID) grinding. In order to investigate the influence of ultrasonic vibration on the characteristics of oxide film on the surface of grinding wheel in compound grinding, the formation mechanism of oxide film on the surface of grinding wheel under ultrasonic action was analyzed theoretically from two aspects: the change of single grain trajectory caused by ultrasonic vibration and the effect of ultrasonic cavitation. The pre-dressing tests were conducted with different pre-dressing times to observe the oxide layer properties at different pre-dressing stages. The grinding tests were conducted after pre-dressing to verify the grinding performance of oxide layer under different pre-dressing methods. The results show that after the ultrasonic vibration of the grinding wheel is added during electrolytic in-process dressing (ELID) process, the holes and cracks of the oxide film on the surface of the grinding wheel are greatly reduced during the whole pre-dressing process. In addition, the pre-dressing current decreases more stably and the current is smaller when it reaches stability. After the pre-dressing, the thickness of the oxide film is reduced by about 35 % and the hardness is increased by about 70 % compared with the ordinary pre-dressing process. The grinding test results show that the oxide film obtained by ultrasonic vibration of the additional grinding wheel is more conducive to improving the surface quality of the grinding process. Therefore, compared with the ordinary pre-dressing process, the density and uniformity of oxide film on the surface of grinding wheel is better and the hardness is higher after the additional ultrasonic vibration of grinding wheel. It is beneficial to improve the surface quality of workpiece.

5.
J Mater Chem B ; 12(6): 1592-1603, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38265091

RESUMO

Osteoporosis is a disease that manifests itself as an abnormality of bone metabolism and is characterized by low bone mass and destruction of the bone microstructure. Since bone resorption occurs more rapidly than new bone formation, osteoporosis leads to reduced orthopedic implant stability. From a microenvironmental point of view, the rationale for this outcome is that osteoclasts are overactive in the bone tissue of patients with osteoporosis, and the large amount of H+ they produce leads to local chronic acidosis, which promotes bone mineral loss. Therefore, we designed a weakly alkaline layered double hydroxide (LDH) coating to modulate the pathologically acidic microenvironment and the osteogenic-osteoclastic coupling by releasing Sr2+. We prepared Sr-Fe LDH coatings on pure titanium implants using a hydrothermal method in this study and characterized the material using SEM, AFM, XRD, XPS, EDS, ICP, pH acidimeter, etc. We found that the coatings had good nanomorphology and were able to efficiently neutralize H+ as well as steadily release Sr2+ for up to 21 days. In vitro, the coating not only significantly promoted the adhesion, proliferation, and differentiation of osteoblasts, but also inhibited the differentiation of osteoclasts at the same time. In addition, in animal experiments, the coating significantly improved the mechanical stability of the implant in osteoporotic rats, increasing Sr-Fe LDH@Ti maximal push-out force by 72.2% compared to Ti. At the same time, the coating was effective in reversing the osteoporotic state, resulting in a 58.5% increase in BV/TV (%), and a 12.4% increase in Tb. N (1 mm-1), a 31.6% increase in Tb. Th (µm), and a 30.9% increase in BA (%). Our results suggest that this Sr-Fe LDH nanocoating material with acid-neutralizing, as well as long-term Sr2+-releasing capabilities, is a novel and effective orthopedic implant coating material under osteoporotic conditions.


Assuntos
Osseointegração , Osteoporose , Ratos , Humanos , Animais , Próteses e Implantes , Osso e Ossos , Osteoclastos
6.
J Colloid Interface Sci ; 661: 46-58, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38295702

RESUMO

In the process of photocatalytic ammonia synthesis, efficient activation of nitrogen molecules constitutes a fundamental challenge. During the N2 activation, the close interdependence between the acceptance and donation of electron results in their mutual limitation, leading to high energy barrier for N2 activation and unsatisfactory photocatalytic performance. This work decoupled the electron acceptance and donation processes by constructing Fe-Bi dual active sites, resulting in enhancing N2 activation through the high electron trapping ability of Fe3+ and strong electron donating ability of Bi2+. The photocatalytic nitrogen reduction efficiency of 3%Fe/Bi2O2.33 (118.71 µmol gcat-1h-1) is 5.3 times that of Bi2O2.33 (22.41 µmol gcat-1h-1). In-situ Fourier transform infrared (In situ FTIR) spectroscopy and density functional theory (DFT) calculations manifest that Fe3+-Bi2+ dual active sites work together to promote nitrogen adsorption and activation, and the reaction path is more inclined toward alternate hydrogenation path. N2 adsorption and activation properties are optimized by heteronuclear bimetallic active sites, which offers a new way for the rational design of nitrogen-fixing photocatalysts.

7.
Ecotoxicol Environ Saf ; 269: 115742, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38039849

RESUMO

The purpose of this study was to explore the protective effect of SeMet on renal injury induced by AFB1 in rabbits and its molecular mechanism. Forty rabbits of 35 days old were randomly divided into control group, AFB1 group (0.3 mg AFB1/kg b.w), 0.2 mg/kg Se + AFB1 group (0.3 mg AFB1/kg b.w + 0.2 mg SeMet/kg feed) and 0.4 mg/kg Se + AFB1 group (0.3 mg AFB1/kg b.w + 0.4 mg SeMet/kg feed). The SeMet treatment group was fed different doses of SeMet diets every day for 21 days. On the 17-21 day, the AFB1 treatment group, the 0.2 mg/kg Se + AFB1 group and the 0.4 mg/kg Se + AFB1 group were administered 0.3 mg AFB1 /kg b.w by gavage (dissolved in 0.5 ml olive oil) respectively. The results showed that AFB1 poisoning resulted in the changes of renal structure, the increase of renal coefficient and serum biochemical indexes, the ascent of ROS and MDA levels, the descent of antioxidant enzyme activity, and the significant down-regulation of Nrf2, HO-1 and NQO1. Besides, AFB1 poisoning increased the number of renal apoptotic cells, rised the levels of PTEN, Bax, Caspase-3 and Caspase-9, and decreased the levels of PI3K, AKT, p-AKT and Bcl-2. In summary, SeMet was added to alleviate the oxidative stress injury and apoptosis of kidney induced by AFB1, and the effect of 0.2 mg/kg Se + AFB1 is better than 0.4 mg/kg Se + AFB1.


Assuntos
Rim , Estresse Oxidativo , Selenometionina , Animais , Coelhos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Rim/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Selenometionina/farmacologia , Aflatoxina B1/toxicidade , NAD(P)H Desidrogenase (Quinona)/efeitos dos fármacos , NAD(P)H Desidrogenase (Quinona)/metabolismo
8.
Sci Total Environ ; 912: 168797, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38007133

RESUMO

How to effectively leverage wastewater data to estimate the risk of various infectious diseases remains a great challenge. To address this issue, we conducted continuous wastewater surveillance in Dalian city during the summer-autumn seasons of 2022, targeting coronavirus and bacterial diseases. The surveillance included daily sampling at a wastewater treatment plant (WWTP) and weekly sampling in three sewersheds. Targeting the bacteria's 16S rRNA gene and the coronavirus's RNA-dependent RNA polymerase (RdRp) gene, we first employed RT-PCR and amplicon sequencing techniques to analyze the presence and phylogenetic relationship of detected coronavirus and bacterial pathogens. Next, qPCR was used to quantify the abundances of detected coronavirus and bacterial species. Based on the daily shedding dynamics of SARS-CoV-2, a novel model was developed to predict daily new cases. Based on the medium shedding density of 12 pathogens, two thresholds of sewage pathogen load (indicating 0.1 % and 1 % infection rates) were proposed. Our PanCoV RT-PCR detected coronavirus on 12th August and from 26th August to 12th September 2022. Targeted amplicon sequencing further identified human coronavirus OC43 (hCoV-OC43) on 12th August and the SARS-CoV-2 Omicron variant since 26th August in samples from WWTPs and sewersheds. Phylogenetic analysis revealed that hCoV-OC43 from this study belonged to genotype K and suggested a close relationship between the amplified coronavirus sequences from wastewater and clinical samples in a local COVID-19 outbreak on 26th August. Amplicon sequencing targeting the bacterial 16S rRNA gene also revealed the presence of several bacterial pathogens. Finally, we assessed the microbial risk of specific pathogens in sewersheds and identified a number of pathogens that reached high (>1 % prevalence) and medium risk levels (>0.1 % prevalence) at sewershed B. Our findings underline wastewater surveillance as a valuable early warning system for coronavirus and other waterborne bacterial diseases, complementing public health response measures.


Assuntos
Infecções Bacterianas , Águas Residuárias , Humanos , Prevalência , RNA Ribossômico 16S/análise , Filogenia , Vigilância Epidemiológica Baseada em Águas Residuárias , Bactérias/genética , Medição de Risco
9.
Small ; 20(6): e2306191, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37775935

RESUMO

In nature, many organisms respond chemotactically to external chemical stimuli in order to extract nutrients or avoid danger. Inspired by this natural chemotaxis, micro/nanomotors with chemotactic properties have been developed and applied to study a variety of disease models. This chemotactic strategy has shown promising results and has attracted the attention of an increasing number of researchers. This paper mainly reviews the construction methods of different types of chemotactic micro/nanomotors, the mechanism of chemotaxis, and the potential applications in biomedicine. First, based on the classification of materials, the construction methods and therapeutic effects of chemotactic micro/nanomotors based on natural cells and synthetic materials in cellular and animal experiments will be elaborated in detail. Second, the mechanism of chemotaxis of micro/nanomotors is elaborated in detail: chemical reaction induced chemotaxis and physical process driven chemotaxis. In particular, the main differences and significant advantages between chemotactic micro/nanomotors and magnetic, electrical and optical micro/nanomotors are described. The applications of chemotactic micro/nanomotors in the biomedical fields in recent years are then summarized, focusing on the mechanism of action and therapeutic effects in cancer and cardiovascular disease. Finally, the authors are looking forward to the future development of chemotactic micro/nanomotors in the biomedical fields.


Assuntos
Nanoestruturas , Nanotecnologia , Animais , Nanotecnologia/métodos , Nanoestruturas/química , Quimiotaxia
10.
J Appl Microbiol ; 135(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38130237

RESUMO

AIMS: Despite metatranscriptomics becoming an emerging tool for pathogen surveillance, very little is known about the feasibility of this approach for understanding the fate of human-derived pathogens in drinking water sources. METHODS AND RESULTS: We conducted multiplexed microfluidic cards and metatranscriptomic sequencing of the drinking water source in a border city of North Korea in four seasons. Microfluidic card detected norovirus, hepatitis B virus (HBV), enterovirus, and Vibrio cholerae in the water. Phylogenetic analyses showed that environmental-derived sequences from norovirus GII.17, genotype C of HBV, and coxsackievirus A6 (CA6) were genetically related to the local clinical isolates. Meanwhile, metatranscriptomic assembly suggested that several bacterial pathogens, including Acinetobacter johnsonii and V. cholerae might be prevalent in the studied region. Metatranscriptomic analysis recovered 349 species-level groups with substantial viral diversity without detection of norovirus, HBV, and CA6. Seasonally distinct virus communities were also found. Specifically, 126, 73, 126, and 457 types of viruses were identified in spring, summer, autumn, and winter, respectively. The viromes were dominated by the Pisuviricota phylum, including members from Marnaviridae, Dicistroviridae, Luteoviridae, Potyviridae, Picornaviridae, Astroviridae, and Picobirnaviridae families. Further phylogenetic analyses of RNA (Ribonucleic Acid)-dependent RNA polymerase (RdRp) sequences showed a diverse set of picorna-like viruses associated with shellfish, of which several novel picorna-like viruses were also identified. Additionally, potential animal pathogens, including infectious bronchitis virus, Bat dicibavirus, Bat nodavirus, Bat picornavirus 2, infectious bursal disease virus, and Macrobrachium rosenbergii nodavirus were also identified. CONCLUSIONS: Our data illustrate the divergence between microfluidic cards and metatranscriptomics, highlighting that the combination of both methods facilitates the source tracking of human viruses in challenging settings without sufficient clinical surveillance.


Assuntos
Quirópteros , Água Potável , Norovirus , Picornaviridae , Vírus de RNA , Vírus , Animais , Humanos , Estações do Ano , Quirópteros/genética , Filogenia , Microfluídica , Vírus de RNA/genética , Norovirus/genética , RNA , RNA Viral/genética
11.
Am J Cancer Res ; 13(11): 5656-5666, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38058816

RESUMO

The present work was performed to clarify the role of TATA-binding protein (TBP) in hepatocellular carcinoma (HCC). TBP expression in adjacent liver tissues and HCC tissue sample was detected by immunohistochemistry and qRT-PCR. With CCK-8, BrdU, flow cytometry, and transwell assays, the malignancy of cancer cell lines were evaluated. The binding sites of TBP and AKT serine/threonine kinase 3 (Akt3) promoter region were predicted by PROMO database, and the binding relationship between TBP and AKT3 promoter was verified with dual luciferase reporter gene assay and ChIP-qPCR assay. The effect of TBP on AKT3 expression was examined by immunoblotting. The signaling pathways associated with AKT3 were predicted by gene set enrichment analysis (GSEA) with LinkedOmics database. It was revealed that, TBP expression in HCC tissues and cell lines was up-regulated, which was associated with the short survival time of patients. Up-regulation of TBP promoted the viability and aggressiveness of HCC cells, while knockdown of TBP had opposite effects. TBP could bind with AKT3 promoter region, and TBP overexpression promoted the expression of AKT3, while its knockdown worked oppositely. Additionally, TBP/AKT3 axis modulated mTOR expression in HCC cells. In conclusion, TBP promotes the transcription of AKT3, thus accelerating the malignant progression of HCC.

12.
Sci Rep ; 13(1): 22074, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38086906

RESUMO

The continuous increase of saline-alkali areas worldwide has led to the emergence of saline-alkali conditions, which are the primary abiotic stress or hindering the growth of plants. Beet is among the main sources of sugar, and its yield and sugar content are notably affected by saline-alkali stress. Despite sugar beet being known as a salt-tolerant crop, there are few studies on the mechanisms underlying its salt tolerance, and previous studies have mainly delineated the crop's response to stress induced by NaCl. Recently, advancements in miRNA-mRNA network analysis have led to an increased understanding of how plants, including sugar beet, respond to stress. In this study, seedlings of beet variety "N98122" were grown in the laboratory using hydroponics culture and were exposed to salt stress at 40 days of growth. According to the phenotypic adaptation of the seedlings' leaves from a state of turgidity to wilting and then back to turgidity before and after exposure, 18 different time points were selected to collect samples for analysis. Subsequently, based on the data of real-time quantitative PCR (qRT-PCR) of salt-responsive genes, the samples collected at the 0, 2.5, 7.5, and 16 h time points were subjected to further analysis with experimental materials. Next, mRNA-seq data led to the identification of 8455 differentially expressed mRNAs (DEMs) under exposure to salt stress. In addition, miRNA-seq based investigation retrieved 3558 miRNAs under exposure to salt stress, encompassing 887 known miRNAs belonging to 783 families and 2,671 novel miRNAs. With the integrated analysis of miRNA-mRNA network, 57 miRNA-target gene pairs were obtained, consisting of 55 DEMIs and 57 DEMs. Afterwards, we determined the pivotal involvement of aldh2b7, thic, and δ-oat genes in the response of sugar beet to the effect of salt stress. Subsequently, we identified the miRNAs novel-m035-5p and novel-m0365-5p regulating the aldh gene and miRNA novel-m0979-3p regulating the thic gene. The findings of miRNA and mRNA expression were validated by qRT-PCR.


Assuntos
Beta vulgaris , MicroRNAs , Humanos , MicroRNAs/metabolismo , Estresse Salino/genética , Plântula/genética , Plântula/metabolismo , Antioxidantes/metabolismo , Álcalis/farmacologia , RNA Mensageiro/metabolismo , Açúcares/metabolismo , Regulação da Expressão Gênica de Plantas
13.
ACS Appl Mater Interfaces ; 15(47): 54539-54549, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37964444

RESUMO

The extensive utilization of Si-anode-based lithium-ion batteries faces obstacles due to their substantial volume expansion, limited intrinsic conductivity, and low initial Coulombic efficiency (ICE). In this study, we present a straightforward, cost-effective, yet scalable method for producing a porous micro Si/Si-Ti alloy anode. This method utilizes titanium-blast furnace slag (TBFS) as a raw material and combines aluminothermic reduction with acid etching. By adjusting the Al:TBFS ratio, the specific surface area of the material can be facilely tailored, ranging from 25.89 to 43.23 m2 g-1, enhancing the ICE from 78.2 to 85.5%. The incorporation of the Si-Ti alloy skeleton and porous structure contributes to the enhanced cyclic stability (capacity retention from 50.7 to 96.9%) and conductivity (Rct from 107.7 to 76.6 Ω). The Si/Si-Ti anode exhibits excellent electrochemical performance, including delivering a specific capacity of 1161 mAh g-1 at 200 mA g-1 after 200 cycles and 1112 mAh g-1 at 500 mA g-1 after 100 cycles, with an improved ICE of 81.2%. This study introduces a successful methodology for designing novel Si anodes from recycling waste materials, providing valuable insights for future advancements in this area.

14.
Micromachines (Basel) ; 14(11)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-38004913

RESUMO

Longitudinal-torsional composite ultrasonic vibration has been widely used in grinding. This paper aims to solve the problem that the resonance frequency deviates greatly from the theoretical design frequency and the vibration mode is poor when the horn is matched with a larger tool head. This paper presents how the longitudinal-torsional composite ultrasonic conical transition horn was designed and optimized by the transfer matrix theory and finite element simulation. For this purpose, the spiral groove parameters were optimized and selected by finite element simulation. Then, the modal analysis and transient dynamic analysis of the horn with grinding wheel were carried out to verify the correctness of the theoretical calculation. The impedance analysis and amplitude test of the horn with grinding wheel were carried out. The test results were in very good agreement with the theoretical and simulation results. Finally, the grinding experiment was carried out. The surface roughness of the workpiece in longitudinal-torsional ultrasonic vibration grinding was obviously reduced compared to that of ordinary grinding. All these obtained results demonstrate that the designed longitudinal-torsional composite ultrasonic horn has very good operational performance for practical applications.

15.
ACS Biomater Sci Eng ; 9(11): 5999-6023, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37921277

RESUMO

The use of cancer vaccines is considered a promising therapeutic strategy in clinical oncology, which is achieved by stimulating antitumor immunity with tumor antigens delivered in the form of cells, peptides, viruses, and nucleic acids. The ideal cancer vaccine has many advantages, including low toxicity, specificity, and induction of persistent immune memory to overcome tumor heterogeneity and reverse the immunosuppressive microenvironment. Many therapeutic vaccines have entered clinical trials for a variety of cancers, including melanoma, breast cancer, lung cancer, and others. However, many challenges, including single antigen targeting, weak immunogenicity, off-target effects, and impaired immune response, have hindered their broad clinical translation. In this review, we introduce the principle of action, components (including antigens and adjuvants), and classification (according to applicable objects and preparation methods) of cancer vaccines, summarize the delivery methods of cancer vaccines, and review the clinical and theoretical research progress of cancer vaccines. We also present new insights into cancer vaccine technologies, platforms, and applications as well as an understanding of potential next-generation preventive and therapeutic vaccine technologies, providing a broader perspective for future vaccine design.


Assuntos
Vacinas Anticâncer , Neoplasias Pulmonares , Melanoma , Humanos , Vacinas Anticâncer/uso terapêutico , Antígenos de Neoplasias , Neoplasias Pulmonares/tratamento farmacológico , Adjuvantes Imunológicos/uso terapêutico , Microambiente Tumoral
16.
ACS Omega ; 8(43): 40362-40374, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37929130

RESUMO

To improve the permeability of wood, three chemical reagents were used to pretreat Chinese fir, white oak, and poplar. Through a factorial experiment with the mass change rate of the wood as the indicator, NaOH was preliminarily selected as the pretreatment agent. Further orthogonal experiments were conducted to explore the effects of NaOH concentration, temperature, and treatment time on the mass change rate, dye uptake rate, transverse dye penetration rate, and color difference of the wood. A fuzzy, comprehensive analysis was used to optimize the pretreatment process. The results showed that after NaOH pretreatment, the highest mass change rates of Chinese fir, white oak, and poplar were 11.30, 10.66, and 8.53%, respectively. Compared with untreated wood, the dye uptake rate of three wood species increased by 1.05, 1.43, and 1.13 times, respectively; the radial dye penetration rate increased by 5.05, 4.14, and 3.38 times, respectively; and the tangential dye penetration rate increased by 3.91, 3.45, and 3.84 times, respectively. These findings indicate an enhancement in permeability for all three wood species following NaOH pretreatment. The brightness of the three wood species decreased after NaOH pretreatment, while the yellow and red colors increased in Chinese fir and poplar and decreased in white oak. Scanning electron microscopy showed that pits in the wood opened after pretreatment, while extractives decreased. Infrared spectroscopy analysis indicated varying degrees of extraction effects from NaOH pretreatment across the three wood species, along with increased active hydroxyl groups within the wood structure. X-ray diffraction analysis revealed that NaOH dissolved noncrystalline substances in wood, leading to improved crystallinity. These experimental findings provide essential data for future endeavors in wood pretreatment and subsequent staining processes.

17.
Infect Agent Cancer ; 18(1): 50, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679851

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) vaccine has played a major role in ending the pandemic. However, little is known about the influence of COVID-19 vaccine on the efficacy of immunotherapy in patients with non-small cell lung cancer (NSCLC). OBJECTIVES: The goal of this study is to explore whether COVID-19 vaccine impacts the efficacy of immune checkpoint inhibitors (ICIs) in NSCLC patients. METHODS: We retrospectively analyzed the survival data of ICI-treated 104 patients with stage III-IV NSCLC, who either received COVID-19 vaccination (n = 25) or no vaccination (n = 79). The potential risk factors, in particular roles of COVID-19 vaccination in the efficacy of ICIs in these patients, were evaluated. RESULTS: Our results showed significantly improved ORR (28.0% vs. 11.39%, p = 0.05) and DCR (88.0% vs. 54.43%, p = 0.005) in the COVID-19 vaccinated group compared with the non-vaccinated group. Regarding the long-term survival benefits, COVID-19 vaccine showed profound influence both on the PFS (HR = 0.16, p = 0.021) and OS (HR = 0.168, p = 0.019) in patients with NSCLC under ICIs treatment. The PFS (p < 0.001) or OS (p < 0.001) was significantly improved in the COVID-19 vaccinated group, compared with the non-vaccinated group. Moreover, CD4 T cell (p = 0.047) level was higher in the COVID-19 vaccinated group than in the non-vaccinated group. CONCLUSIONS: COVID-19 vaccination enhances anti-PD-1 immunotherapy efficacy in patients with stage III-IV NSCLC, suggesting that COVID-19 vaccination may provide additional benefit to NSCLC patients.

18.
Sci Rep ; 13(1): 15422, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37723186

RESUMO

Due to the relatively brief domestication history of sugar beet (Beta vulgaris ssp. vulgaris), our understanding of the genomic diversity and functional genes in its cultivars is limited, resulting in slow breeding progress. To address this issue, a total of 306 germplasm materials of major cultivars and breeding lines from China, the USA, and Europe were selected for genome resequencing. We investigated population structure and genetic diversity and performed selective scanning of genomic regions, identifying six novel genes associated with important agronomic traits: the candidate genes DFAX2 and P5CS for skin roughness; the candidate genes FRO5, GL24, and PPR91 for root yield and sugar yield, and the pleiotropic candidate gene POLX for flourishing growth vigour, plant height, crown size, flesh coarseness, and sugar yield. In addition, we constructed a protein-protein interaction network map and a phenotype-gene network map, which provide valuable information for identifying and characterizing functional genes affecting agronomic traits in sugar beet. Overall, our study sheds light on the future improvement of sugar beet agronomic traits at the molecular level.


Assuntos
Beta vulgaris , Redes Reguladoras de Genes , Beta vulgaris/genética , Melhoramento Vegetal , Análise de Sequência de DNA , Verduras , Açúcares
19.
ACS Appl Mater Interfaces ; 15(38): 45322-45335, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37708083

RESUMO

The hydrophobic modification of poly(vinyl alcohol) (PVA) film as a biodegradable packaging material has received significant attention in recent research. Despite the use of stearic acid (SA) as a coating for the PVA film, a challenge persists due to the poor compatibility between SA and PVA. This study addressed the aforementioned issue by utilizing (3-aminopropyl)trimethoxysilane (APTMS) as a bridging agent to establish a connection between the hydrophilic PVA film and the hydrophobic SA coating through hydrogen bonding and chemical reactions. First, SEM and EDS analyses confirmed the enhanced interfacial compatibility between the SA coating and the PVA film. Subsequently, the results from 1H NMR, FTIR, and XPS experiments presented evidence of hydrogen bonding and chemical reactions among APTMS, SA, and the PVA film. Interestingly, the PVA-APTMS-SA film demonstrated a contact angle of 120.77°, a water absorption of 7.81%, and a water vapor transmission rate of 8.69 g/m2/h. Furthermore, such a composite film displayed exceptional adhesion performance, requiring detachment stresses of 9.86 ± 0.91 and 6.17 ± 0.75 MPa when tested on glass and marble surfaces, respectively. In conclusion, the PVA-APTMS-SA film exhibited significant potential in extending the freshness of fresh-cut apples, making it a promising eco-friendly packaging material for food preservation.

20.
Opt Lett ; 48(19): 5057-5060, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37773384

RESUMO

At present, fiber strain sensors are mainly of the grating type and interference type, while there is relatively little research on fiber surface plasmon resonance (SPR) strain sensors. In this Letter, we propose a highly sensitive fiber SPR strain sensor based on an n-type structure. The strain changes the shape of the fiber n-type structure, causing the transmission mode of light in the fiber to change, thereby changing the SPR incidence angle and causing the SPR resonance valley wavelength to shift, achieving highly sensitive SPR strain sensing. The test results indicate that the strain sensing sensitivity of the proposed sensor reaches 21.33 pm/µÎµ, and two n-type structures are connected in series to obtain a double n-type structure, further enhancing the strain sensing sensitivity to 33.44 pm/µÎµ. This fiber strain sensor has advantages of high sensitivity, low temperature cross talk, strong structural stability, and low production cost, and is expected to become a new solution for wearable intelligent monitoring equipment and strain sensors in the aerospace field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...